什么是磁吸结构
-使用永磁体之间的磁力进行关闭、密封或定位的结构
-广泛应用于消费电子、家电、工业及汽车等领域,其中消费电子领域包括但不限于笔记本电脑、平板电脑、手机、磁吸键盘、触控笔、智能保护套等
-典型的磁吸结构应用为:消费电子产品中的定位器、连接器、传感设备等
磁吸结构设计挑战
-磁吸闭锁时,过大的磁力会损坏外壳、连接器等结构
-用户体验是重要的设计目标(用户可以轻易地将物体磁吸合并分离)
-难以对磁铁间的作用力进行建模,以及确定物体间的冲击力
ANSYS Motion如何提供助力
-满足指定应用场景的磁力设计
-在满足磁力的要求下,减少尺寸和降低成本
-预测移动轨迹、闭合速度和冲击力
-预测冲击后的机械应力
Motion与Maxwell双向耦合工作流简介
2022R2新功能:Motion和Maxwell最新仿真流程
-全自由度的Ansys Motion与Maxwell联合仿真
-自动生成Maxwell模型
• 自动创建模型
• 自动创建求解域
• 自动分配材料(永磁体需用户定义)
• 自动开启物体干涉设置
• 自动创建坐标系
• 自动创建力和力矩
• 自动创建后处理(report和field plot)
• 自动创建求解设置
-用户可以调整Maxwell中的设置
• 材料属性以及磁化方向
• 网格设置以及求解设置
-在每个Motion求解时间步中,Maxwell中的物体会根据Motion传递的数据进行移动和旋转。Maxwell求解后把力和力矩传递到Motion中
Ansys Motion与Maxwell联合仿真工作流程
Ansys Motion
-Motion中的运动模型
-Input:磁力和磁力矩
-Output:永磁体的位置和方向
Maxwell
-Maxwell中的电磁模型
-Input:永磁体的位置和方向
-Output:磁力和磁力矩
软件要求和模型介绍
Ansys Motion前处理步骤
Model
1、启动Ansys Motion Preprocessor 2022R2(Motion的前后处理是分开的软件),在软件左上角选择new→new file
2、在弹出的窗口中选择SubSystem,定义文件名和文件保存路径,点击OK
• Motion使用3级文件:work-file.dfwork(例如汽车);model-file.dfmodal(例如悬挂系统);subsystem-file.dfsub(例如弹簧)
• 对于本例,只需创建一个子系统,不需要层级文件
3、在弹出的窗口中选择默认的单位MMKS,点击next设置重力(可以稍后设置)或点击finish显示前处理界面
4、在body界面下点击import CAD导入CAD模型
5、在弹出的窗口中要导入的模型,motion支持多种CAD格式:ACIS、CATIA、Parasolid、step等
6、点击apply,平板电脑和触控笔模型导入到软件中
• 右键选择物体,可以更改模型名字、透明度以及隐藏实体
7、打开自动隐藏的“属性”选项卡,本案例不考虑重力因素,设置重力为0(XYZ三个方向重力均为0)
Material
1、点击软件下方material工具栏,在材料属性窗口输入铝的材料属性。输入杨氏模量和泊松比后点击“G”,软件自动计算剪切模量
• 对于刚体,只需定义密度;磁性材料的磁特性需在Maxwell中定义
2、铝的材料属性输入完成后点击右侧“√”,铝材料添加到软件中。按照同样的步骤添加玻璃材料属性。输入完成后材料列表中共有三个材料:MAT_001(系统自带)、铝和玻璃
3、在模型树下右键选择物体,点击property,在弹出的窗口中点击“M”为物体分配材料属性。本例中,两个永磁体按默认材料MAT_001、触摸板定义玻璃材料,其他物体定义铝材料
• 对于刚体,可以在此页面直接定义密度,不需要再加载材料属性
Rigid/Flexible
-在模型树下右键选择物体,点击property,在弹出的窗口中可以定义刚体或柔性体。本例中定义触控笔pen_body为柔性体—EasyFlex Nodal
• EasyFlex Nodal: 节点柔性体,采用有限元分析,可以考虑非线性行为
• EasyFlex Modal:模态柔性体,采用模态叠加法计算,速度快,但只能考虑线性行为
-点击EasyFlex界面,软件使用简易的按钮来控制计算精度(类比网格剖分,数值越小计算越精确)。本例选择默认设置3
• Seed Point仅用于空心EasyFlex物体,如薄壁盒子
-在模型树下柔性体与刚体的标志不同
Group
-Group是物体的集合,group内的物体可以批量设置(比如同时移动),方便用户进行前处理操作
-Group内的物体必须是刚体,不能包括柔性体
-本例中必须定义group,因为在定义magnetic force时不能直接使用“物体” ,只能通过group定义电磁力。定义group另一个好处是使用group auto connector可以自动创建group内的约束
-本例中创建两个group,平板电脑和笔(由于pen_body是柔性体,所以group_pen中只包含PM_pen)
-在group界面下点击group ,右键选择PM_pen,点击pick,PM_pen出现在物体列表中,点击OK完成group的定义
-同样的方法定义包含平板电脑的Group,共八个物体。点击OK,在Group菜单下出现group_pen和group_tablet
Group Auto Connector
Group Auto Connector可以自动地为Group内的物体创建固定约束,方便用户进行前处理操作
1、在constraint界面下点击Group Auto Connector,右键选择Group_tablet,点击pick, Group_tablet出现在物体列表中,点击OK完成Group Auto Connector的定义
• 在Connector菜单下出现七个固定约束,七个物体分别与pad形成固定约束条件
2、在constraint界面下点击Fixed,在弹出的窗口中base entity选择pad,action entity选择Ground,点击Apply,把pad与大地设为固定约束,这样GROUP_tablet内的物体全部与大地形成固定约束条件,在仿真过程中保持静止
Contact-Faceset
必须为每个可能接触的物体定义Contact。与约束不同,Contact是面相互接触不是体相互接触。
刚体之间的接触可以使用物体,但是最好使用“faceset”来定义接触;对于柔性体必须使用“faceset”定义接触。
1、在Contact界面下点击Faceset,点击平板电脑与触控笔相邻的平面,Pad/Face(9)出现在弹出的界面列表中,点击OK,在Region菜单下生成FACE_SET01
2、同样的操作,选择触控笔两个表面,生成FACE_SET02;选择触控笔上表面,生成FACE_SET03;隐藏触控笔,选择触控笔中永磁体一个表面,生成FACE_SET04
3、双击FACESET_01,在general菜单下勾选Max facet size,并填写0.5。同样的操作,定义另外三个Faceset网格尺寸为0.5。点击Preview,可以看到面网格。定义网格的作用是在物体接触时进行有限元分析。
4、pen_body与PM_pen,应该是固定约束关系,由于pen_body是柔性体,必须通过Faceset定义约束条件。依照之前介绍的步骤,定义FACE_SET03和FACE_SET04为固定约束关系
5、在Contact界面下点击General Contact,点击Base Geometry下方空白处,右键点击FACESET_01选择pick,同样的步骤定义FACESET_02为Action Geometry。点击apply,在contact菜单下出现Gcontact_01
Magnet
-Motion与Maxwell通过Magnetic功能传递力和力矩数据以及永磁体的位置
-在Force界面下点击Magnetic,右键选择GROUP_pen和GROUP_tablet,点击pick,两个GROUP出现在物体列表中,点击OK,在Connector菜单下出现Mag_001电磁力约束
• 由于“Magnetic”不能直接调用“物体”,所以只能通过Group定义Magnetic Force
-双击Mag_001,设置参数并生成Maxwell project
Maxwell
点击Generate Maxwell Project按钮,自动生成Maxwell project
可更改的步骤为:
1、更改求解域尺寸。自动生成的模型求解域尺寸为XYZ方向扩展500%,调节求解域尺寸,符合电磁场仿真要求
2、定义材料属性。自动生成的模型永磁体的材料属性是空白的,需要用户定义适合的永磁体材料(其他材料也可编辑与更改)
3、设置setup。自动生成的模型solve setup的percent error为0.5,本例按照电磁仿真默认的1%即可
4、确认是否自动开启enable material override(Maxwell 3D→design setting)
5、网格划分和HPC设置(可选)
6、保存project,不要关闭Maxwell,耦合仿真时需要进行数据交换
Solver Settings
1、返回到Motion,在Magnetic的Design Name中填写Maxwell的Design名字,点击OK
2、在Simulation界面下点击Run→Modify,在弹出的界面中设置求解时间和时间步长。本例设置求解时间0.04s,时间步长
50步,如果时间步长过小,可能无法捕捉到接触瞬间电磁力或速度的最大值
3、点击solver界面,定义并行求解核数,点击Simulate开始求解
Ansys Motion后处理
后处理文件
-在求解过程中可以看到迭代次数以及求解时间,在maxwell中可以看到永磁体的位置随着求解时间变化而变化
-求解完成后所有文件都存放在之前定义的文件保存路径中
打开后处理
-求解完成后Motion post processor自动打开
-如果要打开其他后处理文件,点击Ansys Motion Postprocessor 2022R2,在弹出的路径选择对话框中选择*.dfr文件
生成动画
点击模型显示窗口下部的红色录制按钮,编辑软件上方的保存路径、保存格式(MP4或GIF)以及帧频,点击右侧“+”,动画自动保存到设置的路径中
绘制动画云图
点击软件左上角contour,模型列表中只有柔性体pen_body,Mapping type选择FE Node,characteristic选择Displacement(还可以选择其他的物理量),Component选择Y,点击左侧“+”,绘制触控笔在接触过程中Y方向的形变云图
绘制曲线
-点击chart→create chart→add curve,模型列表中选择Contact→Gcontact_01, characteristic选择Normal Force(还可以选择其他的物理量),Component选择Sum,点击左侧“+”,绘制触控笔在接触过程中电磁力曲线
-按照同样的方法,选择PM_pen→PM_pen/CM,绘制触控笔在接触过程中的速度与加速度曲线
-触控笔在接触过程中的电磁力、速度与加速曲线
动画云图+曲线
调整形变云图与三个曲线的位置,按照之前的方法保存动画云图和曲线。可以看到触控笔刚接触到pad时,速度达到峰值;而在笔完全接触pad时电磁力和加速度达到峰值
保存后处理solution
-关闭后处理软件,弹出保存结果窗口,点击save,*.dfnps文件(结果文件)自动存放在之前定义的文件保存路径中
-如想打开之前的solution文件,点击软件左上角 →load,在弹出的窗口中选择要导入的solution文件
不同工况下的仿真对比
增加笔与pad之间距离
-增加笔与pad之间的距离。在模型列表中选择pen_body,点击home→object control→translate,点击“-Y”并输入15,点击右侧的apply,触控笔沿Y轴负方向移动15mm
-Motion与Maxwell中笔与pad增加了距离
-由于距离增加,永磁体的磁力不足以吸引触控笔到pad上,电磁力为0
增加矫顽力
-在Maxwell中修改永磁体矫顽力,再次仿真。可以看出增加矫顽力后,在接触过程中,触控笔的形变有大幅增加
-更改矫顽力后,绘制触控笔在接触过程中的电磁力、速度与加速曲线。可以看出增加矫顽力后,在接触过程中,电磁力、速度与加速度均有大幅增加
总结
Ansys 为永磁体和磁吸结构的分析提供完整的解决方案。Ansys集成了电磁场仿真、机械运动仿真、多物理场和强大的建模功能,帮助客户优化产品性能。
随着电子产品的便捷化、“无线”化,磁吸结构在越来越多的产品中得以应用。该仿真教程广泛适用于各种消费电子产品:笔记本电脑、平板电脑、手机、磁吸键盘、智能保护套等。